

Welcome to channelpack’s documentation!

A small Python library providing an object to hold a number of Numpy
arrays. The object is callable like a function and calls are made to
get at data.

A few factory functions to get a ChannelPack object from data files
are also provided.

Site contents:

	Overview and examples

	channelpack API Reference

	Changes

Install

To install channelpack, do the usual pip tango:

$ pip install channelpack

A numpy (https://numpy.org/) installation is assumed and not installed
by channelpack.

Getting the source code

Get the source for the package:

$ git clone https://github.com/tomnor/channelpack.git

License

GPL

[image: _images/gplv3-127x51.png]
 [https://www.gnu.org/licenses/gpl-3.0.en.html]

Overview and examples

The ChannelPack class is a basic wrapper class for a dict of data and
a dict of field names. Those dict attributes, data and
names, are a little special – they both require integer keys and
the data dict will convert sequence values to Numpy arrays if not
arrays already. And the data dict will raise an exception if any
resulting array is not 1-dimensional.

The 1-dimensional requirement reflects a view of the ChannelPack
object as a holder of flat file data columns.

The integer keys in respective dict are supposed to align to be able
to refer to arrays by name.

ChannelPack objects are callable (like functions) and the idea is to
get at data by making calls to the object, like pack(ch), where ch
is the key for data, either a string name or an integer key.

Make an object

ChannelPack takes zero or one dict for data and zero or one dict for
names to initialize. data and names can also be assigned after
initialization.

Produce some data and make a pack

>>> import channelpack as cp
>>> pack = cp.ChannelPack()
>>> pack.data = {0: range(5), 1: ('A', 'B', 'C', 'D', 'E')}
>>> pack.names = {0: 'seq', 1: 'abc'}
>>> pack
ChannelPack(
data={0: array([0, 1, 2, 3, 4]),
 1: array(['A', 'B', 'C', 'D', 'E'], dtype='<U1')},
names={0: 'seq',
 1: 'abc'})
>>> # make calls to object to get at data
>>> pack(0)
array([0, 1, 2, 3, 4])
>>> pack(0) is pack('seq')
True

The pack is meant to be called to get at data,
(__call__()), but it is not against the
law to operate on the the data and names attributes directly:

>>> pack.data[2] = [letter.lower() for letter in pack('abc')]
>>> pack.names[2] = 'abclower'
>>> pack
ChannelPack(
data={0: array([0, 1, 2, 3, 4]),
 1: array(['A', 'B', 'C', 'D', 'E'], dtype='<U1'),
 2: array(['a', 'b', 'c', 'd', 'e'], dtype='<U1')},
names={0: 'seq',
 1: 'abc',
 2: 'abclower'})

Slicing out parts of data

Support for slicing and filtering is provided by a Boolean array
mask in the pack and the parts or nof arguments in calls. In
calls to get at data, the mask is consulted to return parts of the
data with corresponding True parts in the mask, depending on
arguments. A True entry in the mask represents valid data.

The mask attribute

The mask in the pack is set by performing comparisons on arrays,
possibly combined with Numpy bitwise operators like & and |
(bitwise AND and OR). The goal is to set the mask to a Boolean
array of the same size as the data arrays:

>>> pack.mask = (pack('seq') < 2) | (pack('abc') == 'D')
>>> pack('seq', part=0)
array([0, 1])
>>> pack('seq', part=1)
array([3])
>>> pack('abc', nof='filter')
array(['A', 'B', 'D'], dtype='<U1')
>>> pack('abc', nof='nan')
array(['A', 'B', None, 'D', None], dtype=object)
>>> pack('seq', nof='nan')
array([0., 1., nan, 3., nan])

	The part argument refer to a contiguous True part of the mask,
enumerated from 0. With all elements or only one part True in the
mask there is one part == 0. This argument overrides the nof
argument.

	With nof=’filter’, a possibly shorter version of data is returned
depending on the mask.

	With nof=’nan’, the data length is the same as original array but
with corresponding non-true elements in mask replaced with np.nan or
None depending on the type.

See also

mask_reset()

Start, stop and duration

Sometimes it’s easier to think of a part as starting at some event or
condition and stopping at some other. A method
startstop() is supporting something
like a “start and stop trigger”.

Imagine some alternating movement over time that is slowing down:

>>> import numpy as np
>>> import matplotlib.pyplot as pp
>>> t = np.linspace(0, 1, 100) # (samplerate 100)
>>> f = 5.0
>>> movement = np.sin(2 * np.pi * (f - 2 * t) * t)
>>> pack = cp.ChannelPack({0: t, 1: movement}, {0: 'time', 1: 'movement'})
>>> # Plot the whole movement
>>> _ = pp.plot(pack('time'), pack('movement'), label='movement');

Say that the descending slopes are of particular interest:

>>> startb = pack('movement') > 0.98
>>> stopb = pack('movement') < -0.98
>>> _ = pack.startstop(startb, stopb)
>>> # plot only the descends
>>> _ = pp.plot(pack('time'), pack('movement', nof='nan'),
... label='descends', marker='o')

A method duration() can be used to
make false any true parts that is not long enough. Filter out the
shorter slopes:

>>> _ = pack.duration(0.15, samplerate=100)
>>> # plot only the remaining descend
>>> _ = pp.plot(pack('time'), pack('movement', nof='nan'),
... label='long descend', color='black')
>>> # show it
>>> pp.grid()
>>> _ = pp.legend(loc='upper right'); pp.show()

[image: _images/alternating.png]

Factory functions to get a pack

A few factory functions are provided to create a pack from data files.

Text

Data stored in readable text files in the form of delimited data
fields, (csv, txt). Fields might be numbers or text.

textpack()

If data is numeric only, a lazy variant is available

lazy_textpack()

Spread sheet

Code from the library xlrd is used, xls and xlsx types of spread
sheets are supported.

sheetpack()

Xbase DBF format

Legacy kind of data base format.

dbfpack()

Normal File Format (.NORM)

Currently not supported.

[image: _images/norm_normal_file_format_2x.png]
 [https://xkcd.com/2116/]

channelpack API Reference

All objects and functions documented below are available by:

import channelpack

in the channelpack namespace.

ChannelPack object

	
class channelpack.ChannelPack(data=None, names=None)

	Callable collection of data.

Hold a dict of data (numpy 1d arrays) and make possible to refer to
them by calls of this object, (pack(ch)). A boolean mask is kept
with the pack, used to optionally filter out sections of data in
calls.

	
data

	The dict is not supposed to be consulted directly, call the
ChannelPack object to refer to arrays. Keys are integers
representing column numbers. Setting this attribute to a new
dict of data will convert values to numpy arrays and call
mask_reset() automatically.

	Type

	dict

	
mask

	A boolean array of the same size as the data arrays. Initially
all True.

	Type

	numpy.ndarray

	
nof

	‘nan’, ‘filter’ or None. In calls to the object, this attribute
is consulted to determine how to return data arrays. If None,
arrays are returned as is (the default). If ‘nan’, elements in
the returned array with corresponding False element in mask
are replaced with numpy.nan or None, equivalent to
np.where(array, mask, np.full(len(array), np.nan)). ‘filter’
yeilds the equivalent to array[mask] – the array is stripped
down to elements with corresponding True elements in mask. The
effect of this attribute can be overridden in calls of the
object.

	Type

	str or None

	
names

	Keys are integers representing column numbers (like in data),
values are strings, the field names. Keys in names aligned
with keys in data makes it possible to refer to arrays by
field names. This alignment is not enforced.

	Type

	dict

	
mindur

	Like the method duration (which see) but with a persistent
effect. Any time the mask is updated, this attribute is consulted
to falsify any true part in the mask that is not long enough.
The value refer to the required number of elements in a true
section.

Setting this attribute to a value (not None) updates the mask
without first resetting it.

	Type

	int or None

	
FALLBACK_PREFIX

	Defaults to ‘ch’. This can be used in calls of the pack in place
of a “proper” name. If 4 is a key in the data dict, pack(‘ch4’)
can be used to get at that data. This is also used as requested
in calls to the records method. Everything after this prefix
is assumed to be a number. The prefix should be a valid python
variable name.

	Type

	str

	
fn

	File name of a possible source data file. After initialization
it is up to the caller to set this attribute, else it is the
empty string.

	Type

	str

	
filenames

	Maintained by the pack when setting fn. Extended with
other.filenames in calls to append_pack(other). A list of
one or more empty strings if fn is not set.

	Type

	list of str

	
__init__(data=None, names=None)

	Initiate a ChannelPack

Convert given sequences in data to numpy arrays if necessary.

	Parameters

	
	data (dict) – Keys are integers representing column numbers, values are
sequences representing column data.

	names (dict) – Keys are integers representing column numbers (like in
data), values are strings, the field names.

	
__call__(ch, part=None, nof=None)

	Return data from “channel” ch.

If part is not given, return the array for ch respecting the
setting of attribute nof. See the class attributes description
in ChannelPack for the meaning of nof.

	Parameters

	
	ch (str or int) – The channel key, name or fallback string. The lookup order
is keys in the data dict, names in the names dict and
finally if ch matches a fallback string.

	part (int) – The 0-based enumeration of a True part to return. Overrides
the effect of attribute or argument nof.

	nof (str) – One of ‘nan’, ‘filter’ or ‘ignore’. Providing this argument
overrides any setting of the corresponding attribute nof,
and have the same effect on the returned data as the
attribute nof. The value ‘ignore’ can be used to get the
full array despite a setting of the attribute nof.

	
append_pack(other)

	Append data from other into this pack.

If this pack has data (attribute data is non-empty), it has to
have the same set of keys as other.data (if that is non-empty).
Same is true for the attribute names.

Array dtypes in respective pack.data are at the mercy of numpy
append function.

Extend filenames with other.filenames.

mask_reset is called after the append.

	Parameters

	other (ChannelPack instance) – The other pack.

	Raises

	ValueError – If non-empty dicts in packs do not align.

	
mask_reset()

	Set the mask attribute to the length of data and all True.

If this pack’s data dict is empty, set mask to an empty array.
Size of the mask is based on the array with the lowest key in
data.

	
duration(duration, samplerate=1, mindur=True)

	Require each true part to be at least duration long.

Make false any true part in the mask attribute that is not at
least duration long.

	Parameters

	
	duration (int or float) –

	samplerate (int or float) – If samplerate is 10 and duration is 1, a True part of
minimum 10 elements is required.

	mindur (bool) – If False, require parts to be at most duration long instead.

	Returns

	The possibly altered mask.

	Return type

	array

	
startstop(startb, stopb, apply=True)

	Start and stop trigger masking.

Elements in startb and stopb are start and stop triggers for
masking. A true stop dominates a true start.

	Parameters

	
	startb (sequence) –

	stopb (sequence) – Elements are tested with if el…

	apply (bool) – If True, apply the result of this method to the mask
attribute by anding it, (mask &= result).

	Returns

	A bool ndarray, the result of this method.

	Return type

	array

Example

One descend:

height: 1 2 3 4 5 4 3 2 1
startb: F F F F T F F F F (height == 5)
stobb: T F F F F F F F T (height == 1)
result: F F F F T T T T F
-> height: 5 4 3 2

	
parts()

	Return the enumeration of the True parts.

The list is always consecutive or empty. Each index in the
returned list can be used to refer to a True part in the mask
attribute.

	
records(part=None, nof=None, fallback=False)

	Return a generator producing records of the pack.

Each record is provided as a collections.namedtuple with the
packs names as field names. This is useful if each record make
a meaningful data set on its own.

	Parameters

	
	part (int) – The 0-based enumeration of a True part to return. Overrides
the effect of attribute or argument nof.

	nof (str) – One of ‘nan’, ‘filter’ or ‘ignore’. Providing this argument
overrides any setting of the corresponding attribute nof,
and have the same effect on the returned data as the
attribute nof. The value ‘ignore’ can be used to get all
the records despite a setting of the attribute nof.

	fallback (bool) – The named tuple requires python-valid naming. If fallback is
False, ValueError is raised if any of the names in names
is an invalid identifier. fallback=True will use
FALLBACK_PREFIX to produce names.

	Raises

	ValueError – In iteration of the generator if any of the names used for
the namedtuple is invalid python identifiers.

Note

Either there must be names defined in the pack or argument
fallback must be True, else there will be no records.

	
name(ch, firstwordonly=False, fallback=False)

	Return a name string for channel ch in names.

A helper method to get a name string, possibly modified
according to arguments. Succeeds only if ch corresponds to a
key in data.

	Parameters

	
	ch (int or str.) – The channel key or name. An integer key has precedence.

	firstwordonly (bool or str) – If True, return only the first space-stripped word in the
name. If a string, use as a regex pattern with re.findall on
the name string and return the first element found.

	fallback (bool) – If True, return the fallback string <FALLBACK_PREFIX><N>,
where N corresponds to the data key. Ignore the
firstwordonly argument.

Functions to get a pack from data files

Text

Data stored in readable text files in the form of delimited data
fields, (csv, txt). Fields might be numbers or text:

	
channelpack.textpack(fname, names=None, delimiter=None, skiprows=0, usecols=None, hasnames=False, encoding=None, converters=None, stripstrings=False, debug=False)

	Make a ChannelPack from delimited text data.

First line of data is the line following skiprows.

First line of data determines what fields (splitted by delimiter)
can be converted to a float. Fields that can’t be converted to float
will be treated as strings. Converters in converters are used if
given.

Numeric fields with decimal comma are understood as numeric (besides
numerics with decimal point). If delimiter is a comma it is
therefore important to specify that.

	Parameters

	
	fname (str, file or io stream) –

	names (dict) – Keys are integers (0-based column numbers) and values are
field names. If provided it will be set in the pack and is
mutually exclusive with the usecols argument.

	delimiter (str or bytes) – If not given, any white space is assumed. If fname is a stream
of bytes, delimiter must be bytes if not None.

	skiprows (int) – The number of lines to ignore in the top of fname. First line
following skiprows is data.

	usecols (sequence or int) – The columns to read. A single integer means read that one
column. Ignore if names is given.

	hasnames (bool) – If True, the last line of skiprows is assumed to be field names
and will be used to set names in the pack. Ignored if names
is given.

	encoding (str) – Use encoding to open fname. If None, use default encoding with
io.open. Valid when fname is as string. If fname is a stream of
bytes and encoding is given, use encoding to decode bytes in
text fields.

	converters (dict) – A mapping of column numbers and functions. Each function take
one string argument and return a value.

	stripstrings (bool) – For string fields, strip off leading and trailing whitespace
resulting from whitespace around the delimiter.

	debug (bool) – If true, output the functions used on fields and the last
successful line number read, before an exception is raised.

If data is numeric only, a lazy variant is available:

	
channelpack.lazy_textpack(fname, parselines=25, **textkwargs)

	Return a ChannelPack instance using textpack function.

Try to automatically derive values for the textpack keyword
arguments ‘delimiter’, ‘skiprows’ and ‘converters’. Also try to
parse out the field names.

Works with numerical data files, which might have a header with
extra information to ignore. Converters derived is either float or
one that converts numbers with decimal comma to a float.

Keyword arguments provided to this function overrides any derived
equivalents.

	Parameters

	
	fname (file, str) – Encoding given in textkwargs is respected.

	parselines (int) – The number of lines to preparse. For a successful preparse it
must include at least one line of numeric data.

	**textkwargs – Other keyword arguments accepted by textpack. Overrides derived
keyword arguments if duplicated.

Spread sheet

Code from the library xlrd is used, xls and xlsx types of spread
sheets are supported:

	
channelpack.sheetpack(fname, sheet=0, header=True, startcell=None, stopcell=None, usecols=None)

	Return a ChannelPack instance loaded from spread sheet file.

	Parameters

	
	fname (str) – The file name to read from.

	sheet (int or str) – Sheet enumeration or name string.

	header (bool or str) – True means the data range include field names (top record).
False means the whole range is data. A string can be used to
specify the startcell of the header row, like “C1”.

	startcell (str) – Spread sheet style notation of the upper left cell of the data
range, like “C3”.

	stopcell (str) – Spread sheet style notation of the lower right cell of the data
range, like “H10”.

	usecols (str or seqence of ints) – The columns to use, 0-based. 0 is the spread sheet column
“A”. Can be given as a string also - ‘C:E, H’ for columns C, D,
E and H.

About code from the xlrd project

channelpack include code from the xlrd project copied from a checkout
of commit d470bc9374ee3a1cf149c2bab0684e63c1dcc575 and is thereby not
dependent on the xlrd project.

With the release of version 2.0.0 of xlrd, support for the xlsx format
was removed. A main reason it seems was nobody was willing to maintain
it (the xlrd project do not discourage using xlrd for xls files).
Concerns about possible vulnerabilities with the xml parsing was also
raised and since channelpack now include the code that was removed
from xlrd, some sort of re-iteration of those concerns is given here
so a potential user of channelpack can make an informed choice.

The announcement about xlrd 2.x series and the deprecation of xlsx
support can be read here

https://groups.google.com/g/python-excel/c/IRa8IWq_4zk/m/Af8-hrRnAgAJ

One issue alleged was that defusedxml [https://pypi.org/project/defusedxml] and xlrd as a combination
don’t work well with python 3.9. The linked defusedxml project readme
discuss the vulnerabilities with xml files it addresses. Those
vulnerabilities are also discussed in the Python docs here [https://docs.python.org/3/library/xml.html#xml-vulnerabilities] and in
a thread on the python bug tracker, “XML vulnerabilities in
Python [https://bugs.python.org/issue17239]”, discussing if it should be addressed by Python xml
libraries.

In short, it is possible to craft xml files so they might cause harm
or disturbance when parsing them with a parser not taking precautions
for the risk. The code from the xlrd project included in channelpack
uses defusedxml if available.

Early xlrd includes software developed by David Giffin
<david@giffin.org>.

Xbase DBF format

Legacy kind of data base format:

	
channelpack.dbfpack(dbf, names=None)

	Make a ChannelPack from dbf data file.

	Parameters

	
	dbf (str or file) – If a file it should be opened for binary reads.

	names (list of str) – A sequence of names to read. If not provided read all.

Changes

0.7.0 (2021-03-06)

	Inclusion of files from the xlrd project from a checkout before
version 2.0.0 to continue support for xlsx files. Not dependent on
xlrd project any more.

	A ‘mindur’ attribute in the ChannelPack object with the same effect
as the ‘duration’ method but with a persistent effect, applied
automatically when the mask is renewed.

	Documentation updates.

	Note about the xlrd code under the Spread sheet section in API
reference docs.

0.6.2 (2020-10-10)

	Bugfix of function _slicelist() in pack.py:Channelpack being called
every time the pack was called on a part. A chached slicelist is
used now instead and updated only when the mask is set anew.

	A Makefile fix in linter rule.

0.6.1 (2020-06-26)

	Better handling of missing values in text files.

	Bugfix to respect encoding using the contextopen function in
readtext, d1e26a.

	readtext.py: Don’t blindly strip all white space from lines (made
converters argument have no effect).

0.6.0 (2020-06-10)

	The project rewritten completely.

	Python 3 and 2 supported.

	History prior to this release might be erased.

0.4.0 (2017-08-19)

	Allow open file objects to be supplied to the txtpack function,
not only the file name as a string.

	Some pep8 work done in the core python files.

0.3.2 (2016-10-29)

	Bugfix in pullxl.py. An update in xlrd version 1.0.0 on empty cell values made
this bug evident. Empty cells was reported as empty bytestrings before, now it
is reported as empty unicode strings as documented. The channelpack bug
resulted in all values in a “channel” being unicode strings when some should
be numpy.nan and the rest numbers.

0.3.1 (2015-05-10)

	Added a records method to ChannelPack.

0.3.0 (2015-04-06)

	The persistent condition strings are written whith python syntax operating on
numpy arrays. Identifiers use replacement syntax like %(<id>).

	Removed method ch from the ChannelPack, superfluous.

	Added counter method to the ChannelPack.

	Added parts method to the ChannelPack.

	Change name on method set_samplerate, was set_sample_rate.

	A number of bugfixes.

	Two xldate conversion functions in pullxl.

0.2.2 (2014-11-04)

	Important bugfix in pulldbf module. Was forcing types on numpy, biggest float
was ‘f4’. In case of excel kind of dates for example, this is not enough, and
numbers were lost. The result was repeating equal numbers that should not be
equal.

	Since forcing types on numpy was deprecated, an issue with missing values in a
dbf file (nulls) was easy to fix. Now, null values are replaced with numpy
nan, was (0). Also very important.

0.2.1 (2014-10-20)

	xlrd added to install_requires list in setup.py

	Docstring fix in slicelist method. Was wrong.

0.2.0 (2014-10-19)

	Support for reading spreadsheet data (xlrd as backend).

	Add method slicelist to channelpack.

0.1.5 (2014-10-15)

	Bugfix in function rebase in the ChannelPack class. Was a KeyError.

0.1.4 (2014-09-22)

	Corrections in the changes file, (this file). Some changes was stated as
coming but already implemented, (assumingly with 0.1.2).

	Add some coming changes in this file.

	This version has no changes in code and no distribution. But docs are updated.

0.1.3 (2014-09-21)

	Docs made available. Readme updated.

	Update docstring in ChannelPack.load

	Comments in the pulltxt module on possible alternative regex.

0.1.2 (2014-09-21)

	Bugfix (hopefully) with the start and stop conditions. Addition in function
_startstop_bool in datautils module. Start conditions could be “ignored”.

	Update append_load method in pack.ChannelPack. Keep data on all files loaded
in metamulti dict, including the new file.

	Add method rebase in ChannelPack, rebase and align a channel.

0.1.1 (2014-08-16)

	Editorials on the README file. Some updates in the setup.py file.

0.1.0 (2014-08-16)

	Initial release

Index

 _
 | A
 | C
 | D
 | F
 | L
 | M
 | N
 | P
 | R
 | S
 | T

_

 	
 	__call__() (channelpack.ChannelPack method)

 	
 	__init__() (channelpack.ChannelPack method)

A

 	
 	append_pack() (channelpack.ChannelPack method)

C

 	
 	ChannelPack (class in channelpack)

D

 	
 	data (channelpack.ChannelPack attribute)

 	
 	dbfpack() (in module channelpack)

 	duration() (channelpack.ChannelPack method)

F

 	
 	FALLBACK_PREFIX (channelpack.ChannelPack attribute)

 	
 	filenames (channelpack.ChannelPack attribute)

 	fn (channelpack.ChannelPack attribute)

L

 	
 	lazy_textpack() (in module channelpack)

M

 	
 	mask (channelpack.ChannelPack attribute)

 	
 	mask_reset() (channelpack.ChannelPack method)

 	mindur (channelpack.ChannelPack attribute)

N

 	
 	name() (channelpack.ChannelPack method)

 	
 	names (channelpack.ChannelPack attribute)

 	nof (channelpack.ChannelPack attribute)

P

 	
 	parts() (channelpack.ChannelPack method)

R

 	
 	records() (channelpack.ChannelPack method)

S

 	
 	sheetpack() (in module channelpack)

 	
 	startstop() (channelpack.ChannelPack method)

T

 	
 	textpack() (in module channelpack)

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to channelpack’s documentation!

 		
 Overview and examples

 		
 Make an object

 		
 Produce some data and make a pack

 		
 Slicing out parts of data

 		
 The mask attribute

 		
 Start, stop and duration

 		
 Factory functions to get a pack

 		
 Text

 		
 Spread sheet

 		
 Xbase DBF format

 		
 Normal File Format (.NORM)

 		
 channelpack API Reference

 		
 ChannelPack object

 		
 Functions to get a pack from data files

 		
 Text

 		
 Spread sheet

 		
 Xbase DBF format

 		
 Changes

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_images/norm_normal_file_format_2x.png
T SENT YOU THE DATA.
THP\N\KS!

...THIS 1S A WORD DOCUMENT
CONTAINING AN EMBEDDED PHOTO
YOU TOOK OF YOUR SCREEN
UITH THE SPREADSHEET OPEN.

YEAH? DOES YOUR COMPUTER
NOT SUPPORT .NORM FILES?

MAYBE YOU NEED TO UPDATE.

.

RS

SINCE EVERYONE SENDS STUFF THIS
LAY ANYVAY, WJE SHOULD JusT
FORMALIZE IT AS A STANDARD,

_static/ajax-loader.gif

_images/alternating.png
-
| _o—o
| oo

000000000
000000000

4 6 © 6 6 & o & o

_images/gplv3-127x51.png

